
Customizing Macromedia Dreamweaver MX

Macromedia Dreamweaver MX can be customized in many ways, allowing you to work in a
manner that’s familiar, comfortable, and efficient for you. This article describes advanced
methods for customizing Dreamweaver MX, with a focus on hand-editing configuration files.

Note: The information in this article applies only to Dreamweaver MX. Earlier versions of Dreamweaver used
somewhat different configuration files and formats.

About customizing Dreamweaver
There are a variety of general approaches to customizing Dreamweaver. Several of these
approaches are covered in Dreamweaver Help (Help > Using Dreamweaver); only the advanced
technique of hand-editing configuration files is discussed in detail in this article.

The following are some of the general approaches to customizing that are covered in
Dreamweaver Help. These approaches are not discussed in this article.

• Arrange your workspace any way you want it.

• Change settings in dialog boxes in Dreamweaver. You can set preferences in a variety of areas,
including accessibility, code coloring, fonts, highlighting, and previewing in browsers, all using
the Preferences panel (Edit > Preferences). You can also change keyboard shortcuts, using the
Keyboard Shortcut Editor (Edit > Keyboard Shortcuts).

• Add third-party extensions to Dreamweaver using the Extension Manager (Help >
Manage Extensions).

The following are some of the ways you can customize Dreamweaver by editing configuration
files; for more information, see the rest of this article.

• Rearrange the objects in the Insert bar, create new tabs to reorganize the objects, or add new
objects. See “Modifying the Insert bar” on page 5.

• Change the names of menu items, add new commands to menus, and remove existing
commands from menus. See “About customizing Dreamweaver menus” on page 9.

• Change browser profiles or create new ones. See “Working with browser profiles” on page 20.

• Change how third-party tags (including ASP and JSP tags) appear in the Document window’s
Design view. See “Customizing the interpretation of third-party tags” on page 23.

Another approach to customizing Dreamweaver is to create your own extensions. For more
information, see “Extending Dreamweaver: Basics” on page 23.
1

About customizing Dreamweaver in a multiuser environment
You can customize Dreamweaver to suit your needs even in a multiuser operating system such as
Windows NT, Windows 2000, Windows XP, or Mac OS X. Dreamweaver prevents any user’s
customized configuration from affecting any other user’s customized configuration. To
accomplish this goal, the first time you run Dreamweaver in a multiuser operating system that it
recognizes, the application copies various configuration files into a user configuration folder that
belongs to you. When you customize Dreamweaver using dialog boxes and panels, the application
modifies your user configuration files instead of modifying the master configuration files.

To customize Dreamweaver by hand-editing a configuration file in a multiuser environment, edit
the appropriate user configuration file, rather than editing the master configuration files in the
application folder. To make a change that affects most users, you can edit a master configuration
file, but users who already have corresponding user-configuration files won’t see the change. In
general, if you want to make a change that affects all of the users, it’s best to create an extension
and install it using the Extension Manager. For more information, see “Extending Dreamweaver:
Basics” on page 23.

Note: In older operating systems (Windows 98, Windows ME, and Mac OS 9.x), a single set of Dreamweaver
configuration files is shared by all users, even if the operating system is configured to support multiple users.

The following are the specific locations for user configuration folders in each multiuser
operating system:

• Windows NT: C:\WinNT\profiles\username\Application
Data\Macromedia\Dreamweaver MX\Configuration

• Windows 2000 and Windows XP: C:\Documents and Settings\username\Application
Data\Macromedia\Dreamweaver MX\Configuration (In Windows XP, this folder may be
inside a hidden folder)

• Mac OS X: Hard disk/Users/username/Library/Application Support/Macromedia/
Dreamweaver MX/Configuration

Note: To install extensions that all users can use in a multiuser operating system, you must be logged in as
Administrator (Windows) or root (Mac OS X).

Dreamweaver copies only some of the configuration files into your user configuration folder the
first time you run the application. (The files that it copies are specified in the version.xml file in
the Configuration folder.) When you customize Dreamweaver from within the application (for
example, when you modify one of the predesigned code snippets in the Snippets panel),
Dreamweaver copies the relevant files into your user configuration folder. The version of a file in
your user configuration folder always takes precedence over the version in the master
configuration folder.

To hand-customize a configuration file that Dreamweaver has not copied into your user
configuration folder, first copy the file from the master configuration folder to the corresponding
location inside your user configuration folder. Then edit the copy in your user configuration folder.
2

Deleting configuration files in a multiuser environment

When you do something within Dreamweaver in a multiuser operating system that would cause a
configuration file to be deleted (for example, when you delete a predesigned snippet from the
Snippets panel), Dreamweaver creates a file in your user configuration folder called
mm_deleted_files.xml. When a file is listed in mm_deleted_files.xml, Dreamweaver behaves as if
that file doesn’t exist.

Note: The mm_deleted_files.xml file isn’t created until you take an action that would cause a configuration file
to be deleted.

To deactivate a configuration file:

1 Quit Dreamweaver.

2 Using a text editor, edit mm_deleted_files.xml in your user configuration folder; add an item
tag to that file, giving the path (relative to the master Configuration folder) of the
configuration file to deactivate.

Note: Do not edit mm_deleted_files.xml in Dreamweaver.

3 Save and close mm_deleted_files.xml.

4 Start Dreamweaver again.

About mm_deleted_files.xml tag syntax

The mm_deleted_files.xml file contains a structured list of items that describe configuration files
which Dreamweaver is to ignore. These items are described by XML tags which you can edit in a
text editor.

The following sections describe the syntax of the mm_deleted_files.xml tags. Optional attributes
are marked in the attribute lists with braces ({}); all attributes not marked with braces are required.

<deleteditems>

Description

Container tag holding a list of items that Dreamweaver should treat as deleted.

Attributes

None.

Contents

This tag must contain one or more item tags.

Container

None.

Example

<deleteditems>
<!-- item tags here -->

</deleteditems>
Customizing Macromedia Dreamweaver MX 3

<item>

Description

Specifies a configuration file that Dreamweaver should ignore.

Attributes

name
name The path to the configuration file, relative to the Configuration folder. In Windows, use a
backslash (\) to separate parts of the path; on the Macintosh, use a colon (:).

Contents

None (empty tag).

Container

This tag must be contained in a deleteditems tag.

Example

<item name="snippets\headers\5columnwith4links.csn" />

Reinstalling and uninstalling Dreamweaver in a multiuser environment

After you install Dreamweaver MX, if you later reinstall Dreamweaver MX or upgrade to a later
version, Dreamweaver automatically makes backup copies of existing user configuration files, so
that if you’ve customized those files by hand, you still have access to the changes you made.

When you uninstall Dreamweaver from a multiuser system (which you can do only if you have
administrative privileges), Dreamweaver can remove each user configuration folder for you.

Changing the default file type
By default, Dreamweaver shows all the file types it recognizes in the File > Open dialog box. You can
use a pop-up menu in that dialog box to limit the display to certain types of files. If most of your
work involves a specific file type (such as ASP files), you can change the default display. Whatever
file type is listed on the first line of the Dreamweaver Extensions.txt file becomes the default.

Note: If you want to see all file types in the File > Open dialog box, even the files Dreamweaver can’t open, you must
select All Files (*.*). This is different from All Documents, which shows only the files Dreamweaver can open.

To change the Dreamweaver default File > Open file type:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.

2 Open Extensions.txt in Dreamweaver or in a text editor.

3 Cut the line corresponding to the new default, and paste it at the beginning of the file, to make
it the first line of the file.

4 Save the file.

5 Restart Dreamweaver.

To see the new default, select File > Open and look at the pop-up menu of file types.
4

To add new file types to the menu in the File > Open dialog box:

1 Make a backup copy of the Extensions.txt file in the Configuration folder.

2 Open Extensions.txt in Dreamweaver or a text editor.

3 Add a new line for each new file type. In capital letters, enter the filename extensions that the
new file type can have, separated by commas; then add a colon and a brief descriptive phrase to
show in the pop-up menu for file types that appears in the File > Open dialog box. For
example, for JPEG files, enter the following:

JPG,JPEG,JFIF:JPEG Image Files

4 Save the file.

5 Restart Dreamweaver.

To see the changes, select File > Open and click the pop-up menu of file types.

Modifying the Insert bar
By default, the Insert bar is divided into several tabs. (For information about the objects in these
tabs, see Dreamweaver Help.) The tabs correspond to folders in the Configuration/Objects folder
within the Dreamweaver application folder.

You can move objects from one tab to another, rename tabs, and remove objects from the panel
altogether. To make your changes appear in the Insert bar, you must either restart Dreamweaver
or reload extensions.

The insertbar.xml file specifies the order of the tabs, and the order of objects within each tab.
Dreamweaver creates the Insert bar based on the tabs and objects specified in insertbar.xml, then
checks the folders corresponding to the tabs, looking for additional objects not listed in
insertbar.xml. Such objects are appended to the appropriate tabs, after all the objects that are
listed in insertbar.xml.

Dreamweaver ignores folders in the Objects folder that aren’t listed in insertbar.xml.

Note: Remember that in a multiuser operating system, you should edit copies of configuration files in your user
configuration folder rather than editing master configuration files. For more information, see “About customizing
Dreamweaver in a multiuser environment” on page 2.

For each object in an Insert bar tab, there are two or three files in the corresponding folder:

• A GIF file containing an icon for the object

• An HTML file containing either the HTML to be inserted into your file or an HTML form
that lets you specify data to be inserted (such as the text of a comment)

• A JavaScript file (optional) that generates the HTML to be inserted into your file

To move or copy an object from one Insert bar tab to another, or to a new location within a tab:

1 Make a backup copy of Objects/insertbar.xml.

2 Open insertbar.xml in Dreamweaver or in a text editor.

3 Find the button tag representing the object you want to move or copy. For example, to move
the Image object from its location in the Common tab, find the button tag that has an id
attribute of "DW_Image".

4 Cut or copy the entire button tag.
Customizing Macromedia Dreamweaver MX 5

5 Find the category tag representing the tab you want to move or copy the object to.

6 Find the location within the tab where you want the object to appear.

7 Paste the copied button tag.

8 Save insertbar.xml.

9 Reload extensions.

To reload extensions:

1 Control-click (Windows) or Option-click (Macintosh) the Options menu in the Insert bar’s
title bar.

2 Choose Reload Extensions.

To add a separator to an Insert bar tab:

1 Make a backup copy of Objects/insertbar.xml.

2 Open insertbar.xml in Dreamweaver or in a text editor.

3 Find the button tag representing the object you want to place a separator after.

4 After that button tag, add the following code:

<separator showIf=""/>

5 Save insertbar.xml.

6 Reload extensions.

To remove an object from the Insert bar:

1 Open insertbar.xml in Dreamweaver or in a text editor.

2 Find the button tag representing the object you want to remove.

3 Delete the entire button tag.

4 Save insertbar.xml.

5 On your disk, move the object’s HTML, GIF, and JavaScript files out of the folder they’re in,
and into a folder that isn’t listed in insertbar.xml. For example, you could create a new folder in
Configuration/Objects named Unused, and move the object’s files into that folder. (If you’re
certain you want to remove the object, you can delete those files entirely, but it’s a good idea to
keep backups of those files in case you need to restore the object later.)

6 Reload extensions.

To change the order of tabs in the Insert bar:

1 Make a backup copy of Objects/insertbar.xml.

2 Open insertbar.xml in Dreamweaver or in a text editor.

3 Find the category tag corresponding to the tab you want to move, and select that tag,
including all of the tags contained in it.

4 Cut that tag.
6

5 Paste the tag into its new location. Be sure to paste the tag in a location that isn’t inside any
other category tag.

6 Save insertbar.xml.

7 Reload extensions.

To rename a tab on the Insert bar:

1 On your disk, find the folder corresponding to the tab you want to rename.

2 In that folder, open the _folderinfo.txt file.

3 Change the name that appears in that file and save the file.

4 Reload extensions.

To create a new tab:

1 Make a backup copy of Objects/insertbar.xml.

2 Open insertbar.xml in Dreamweaver or in a text editor.

3 Create a new category tag, specifying the default folder for the tab and a set of objects to
appear in the tab.

For information on the syntax of the tags in insertbar.xml, see Extending Dreamweaver
(Help > Extending Dreamweaver).

4 Save insertbar.xml.

5 Reload extensions.

To add a new object to the Insert bar in a specific tab:

1 Create the object. (See “Creating a simple object” on page 7.)

2 Make a backup copy of Objects/insertbar.xml.

3 Open insertbar.xml in Dreamweaver or in a text editor.

4 Find the category tag representing the tab you want to add the object to.

5 Inside that tag, add a new button tag representing the new object.

For information on the syntax of the tags in insertbar.xml, see Extending Dreamweaver
(Help > Extending Dreamweaver).

Creating a simple object
You can create your own objects to add to the Insert bar. Many simple objects require no
JavaScript; they contain only the HTML source code to be inserted into the document. For basic
information about creating more complex objects using JavaScript, see “Extending Dreamweaver:
Basics” on page 23.

After you create an object, you can package it and distribute it on the Macromedia Exchange site
if you want other Dreamweaver users to be able to use it. For more information, see the
Macromedia Exchange for Dreamweaver site at www.macromedia.com/exchange/dreamweaver.
To package an extension, you must first download the Extension Manager installer from that site,
then install the Extension Manager with the developer option.
Customizing Macromedia Dreamweaver MX 7

To create a simple object:

1 In Dreamweaver, choose File > New.

The New Document dialog box appears.

2 In the Category column on the left, choose Other.

A list of file types appears in the center column of the dialog box.

3 Select Text from the list of file types and click Create.

A new blank text document appears.

4 Add the code and text that you want this object to insert into your documents; for example,
type the following:

<p>
© 2002 ZII Productions, Inc.

All Rights Reserved
</p>

5 Save the file.

If you want the new object to appear in one of the existing Insert bar tabs, save it in one of the
subfolders of the Objects folder. For information on placing the object in a particular position
in the tab or on creating a new tab, see “Modifying the Insert bar” on page 5.

6 In a graphics or image-editing application (such as Macromedia Fireworks), create an 18 x 18
pixel GIF image that will serve as the icon for your object in the Insert bar.

If you create a larger image, Dreamweaver automatically scales it to 18 x 18 pixels. If you do
not create an icon for your object, Dreamweaver displays a generic object icon for your object
in the Insert bar.

7 Give your icon the same filename as your object file, but use .gif as the extension; then save the
icon in the same directory as the object file.

For example, if your object is called Copyright_ZII.htm and you saved it in the Common
directory, name your icon Copyright_ZII.gif and save it in the Common directory as well.

8 Restart Dreamweaver, or reload extensions, to use your new object.

The object appears at the bottom of the Insert menu as well as on the Insert bar. For
information on reloading extensions, see “Modifying the Insert bar” on page 5.

Changing FTP mappings
The FTPExtensionMap.txt file (Windows) and the FTPExtensionMapMac.txt file (Macintosh)
map filename extensions to FTP transfer modes (ASCII or BINARY).

Each line in each of the two files includes a filename extension (such as GIF) and either the word
ASCII or the word BINARY, to indicate which of the two FTP transfer modes should be used
when transferring a file with that extension. On the Macintosh, each line also includes a creator
code (such as DmWr) and a file type (such as TEXT); when you download a file with the given
filename extension, Dreamweaver assigns the specified creator and file type to the file.

If a file that you’re transferring doesn’t have a filename extension, Dreamweaver uses the BINARY
transfer mode.

Note: Dreamweaver cannot transfer files in macbinary mode. If you need to transfer files in macbinary mode, you
must use another FTP client.
8

For example, the following line (from the Macintosh file) indicates that files with a .html filename
extension should be transferred in ASCII mode:

HTML DmWr TEXT ASCII

In both files, all elements on a given line are separated by tabs. The extension and the transfer
mode are in uppercase letters.

To change a default setting, edit the file in a text editor.

To add information about a new filename extension:

1 Edit the extension-map file in a text editor.

2 On a blank line, enter the filename extension (in uppercase) and press Tab.

3 On the Macintosh, add the creator code, a tab, the file type, and another tab.

4 Enter ASCII or BINARY to set an FTP transfer mode.

5 Save the file.

About customizing Dreamweaver menus
Dreamweaver creates all of its menus from the structure defined in an XML file called menus.xml,
in the Configuration/Menus subfolder of the Dreamweaver application folder. Editing the
menus.xml file changes the Dreamweaver menus the next time you start Dreamweaver. For basic
information about XML, see Dreamweaver Help.

By editing the menus.xml file, you can add, change, and remove keyboard shortcuts for menu
items, though in most cases it’s easier to do that using the Keyboard Shortcut Editor. (See
Dreamweaver Help.) You can also rearrange, rename, and remove menu items.

In a multiuser operating system, when you make changes within Dreamweaver that result in
changes to menus.xml (such as changing keyboard shortcuts using the Keyboard Shortcut
Editor), Dreamweaver creates a new menus.xml file in your user configuration folder. To
customize menus.xml in a multiuser operating system, edit the copy of the file in your user
configuration folder (or copy the master menus.xml file to your user configuration folder if
Dreamweaver hasn’t yet created a version there). For more information, see “About customizing
Dreamweaver in a multiuser environment” on page 2.

If you open menus.xml in an XML editor, you may see error messages regarding the ampersands
(&) in the menus.xml file. It’s best to edit menus.xml in an ordinary text editor. (Don’t edit it
in Dreamweaver.)

Note: Always make a backup copy of the current menus.xml file, or any other Dreamweaver configuration file, before
you modify it. It’s easy to make mistakes in editing the menu configuration file, and there’s no way to revert to a
previous set of menus other than replacing the menus.xml file. In case you forget to make a backup, though, the
Configuration folder contains a backup of the default menus.xml file, called menus.bak; to revert to the default menu
set, replace menus.xml with a copy of menus.bak.

Modifying the Commands menu

You can add certain kinds of commands to the Commands menu, and change their names,
without editing the menus.xml file. For more information about menus.xml, see “About
customizing Dreamweaver menus” on page 9.

Note: The term “command” has two meanings in Dreamweaver. Strictly speaking, a command is a particular kind of
extension. In some contexts, however, “command” is used interchangeably with “menu item” to mean any item that
appears in a Dreamweaver menu, no matter what it does or how it’s implemented.
Customizing Macromedia Dreamweaver MX 9

To create new commands that are automatically placed in the Commands menu, use the History
panel. Alternatively, you can use the Extension Manager to install new extensions, including
commands. For more information, see Dreamweaver Help.

To reorder the items in the Commands menu, or to move items between menus, you must edit
the menus.xml file. (See “Rearranging menus and menu items” on page 10.)

To rename a command you’ve created:

1 Choose Commands > Edit Command List.

A dialog box appears, listing all of the commands whose names you can change. (Commands
that are in the default Commands menu don’t appear on this list and can’t be edited using
this approach.)

2 Select a command to rename.

3 Enter a new name for it.

4 Click Close.

The command is renamed in the Commands menu.

To delete a command you’ve created:

1 Choose Commands > Edit Command List.

A dialog box appears listing all of the commands you can delete. (Commands that are in the
default Commands menu don’t appear on this list and can’t be deleted using this approach.)

2 Select a command to delete.

3 Click Delete, and then confirm that you want to delete the command.

The command is deleted. Note that the file containing the code for the command is also
deleted; deleting a command does not simply remove the menu item from the menu. Be
certain that you really want to delete the command before you use this approach. If you want
to remove it from the Commands menu without deleting the file, you can find the file in
Configuration/Commands and move it to another folder.

4 Click Close.

Rearranging menus and menu items

By editing the menus.xml file, you can move menu items within a menu or from one menu to
another, add separators to or remove them from menus, and move menus within a menu bar or
even from one menu bar to another.

Note that you can move items into or out of context menus using the same procedure as for
other menus.

For information, see “About menus.xml tag syntax” on page 13.

To move a menu item:

1 Quit Dreamweaver.

2 Make a backup copy of the menus.xml file.

3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)
10

4 Cut an entire menuitem tag, from the <menuitem at the beginning to the /> at the end.

5 Place the insertion point at the new location for the menu item. (Make sure it’s between a
<menu> tag and the corresponding </menu> tag.)

6 Paste the menu item into its new location.

To create a submenu while moving a menu item:

1 Place the insertion point inside a menu (somewhere between a <menu> tag and the
corresponding </menu> tag).

2 Insert a new <menu></menu> pair inside the menu.

3 Add new menu items to the new submenu.

To insert a separator between two menu items:

• Enter <separator /> between the two menuitem tags.

To remove an existing separator:

• Delete the corresponding <separator /> line.

To move a menu:

1 Quit Dreamweaver.

2 Make a backup copy of the menus.xml file.

3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)

4 Cut an entire menu and its contents, from the opening <menu> tag to the closing </menu> tag.

5 Place the insertion point at the new location for the menu. (Make sure it’s between a
<menubar> tag and the corresponding </menubar> tag.)

6 Paste the menu into its new location.

Changing the name of a menu item or menu

You can easily change the name of any menu item or menu by editing the menus.xml file. For
more information, see “About menus.xml tag syntax” on page 13.

To change the name of a menu item or menu:

1 Quit Dreamweaver.

2 Make a backup copy of the menus.xml file.

3 Open menus.xml in a text editor such as HomeSite, BBEdit, or Wordpad (don’t open it
in Dreamweaver).

4 If you’re changing a menu item, find the appropriate menuitem tag, and change the value of its
name attribute. If you’re changing a menu, find the appropriate menu tag, and change the value
of its name attribute. In either case, do not change the id attribute.

5 Save and close menus.xml; then start Dreamweaver again to see your changes.
Customizing Macromedia Dreamweaver MX 11

Changing keyboard shortcuts

If the default keyboard shortcuts aren’t convenient for you, you can change or remove existing
shortcuts or add new ones. The easiest way to do this is to use the Keyboard Shortcut Editor. (For
more information, see Dreamweaver Help.) However, you can also modify keyboard shortcuts
directly in menus.xml if you prefer, though it’s much easier to make mistakes entering shortcuts in
menus.xml than in the Keyboard Shortcut Editor. For more information, see “About menus.xml
tag syntax” on page 13.

To change a keyboard shortcut:

1 Quit Dreamweaver.

2 Make a backup copy of the menus.xml file.

3 Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)

4 Look at the Keyboard Shortcut Matrix (available from the Dreamweaver Support Center) and
find a shortcut that’s not being used, or one that you want to reassign.

If you reassign a keyboard shortcut, change it on a printed copy of the matrix for future reference.

5 If you’re reassigning a keyboard shortcut, find the menu item that the shortcut is assigned to,
and remove the key="shortcut" attribute from that menu item.

6 Find the menu item to assign or reassign the keyboard shortcut to.

7 If the menu item already has a keyboard shortcut, find the key attribute on that line. If it doesn’t
already have a shortcut, add key="" anywhere between attributes inside the menuitem tag.

8 Between the double quotation marks of the key attribute, enter the new keyboard shortcut.

Use a plus (+) sign between the keys in a key combination. For more information about
modifiers, see the description of the menuitem tag in “<menuitem>” on page 15.

If the keyboard shortcut is in use elsewhere and you didn’t remove the other use of it, the
shortcut will apply only to the first menu item that uses it in menus.xml.

Note: You can use the same keyboard shortcut for a Windows-only menu item and for a Macintosh-only menu item.

9 Write your new shortcut in the appropriate location in the Keyboard Shortcut Matrix.

Modifying pop-up menus and context menus

Dreamweaver provides pop-up menus and context menus in many of its panels and dialog boxes.
Some context menus are defined in the menus.xml file; others are defined in other XML files. You
can add, remove, or modify items in those menus by hand, though in most cases it’s better to
write an extension to make such changes. For information on creating extensions that modify
most of these XML files, see Extending Dreamweaver (Help > Extending Dreamweaver).

The following pop-up menus and context menus in Dreamweaver are specified in XML files,
using the same tags as menus.xml:

• Data sources (listed in the plus (+) pop-up menu in the Bindings panel) are specified in
DataSources.xml files, in subfolders of the DataSources folder.

• Server behaviors (listed in the plus (+) pop-up menu in the Server Behaviors panel) are
specified in ServerBehaviors.xml files, in subfolders of the ServerBehaviors folder.
12

• Server formats (listed in the plus (+) pop-up menu in the Edit Format List dialog box) are
specified in ServerFormats.xml files, in subfolders of the ServerFormats folder.

• Items in the formats pop-up menu for a binding in the Bindings panel are specified in
Formats.xml files, in subfolders of the ServerFormats folder. You can add entries to this menu
from inside Dreamweaver by using the Add Format dialog box.

• The Tag Library Editor dialog box menu items are specified in the TagLibraries/TagImporters/
TagImporters.xml file.

• Menu items for parameters in the Generate Behavior dialog box, which is part of the Server
Behavior Builder, are specified in Shared/Controls/String Menu/Controls.xml.

• Items for context menus associated with ColdFusion Components are specified in
Components/ColdFusion/CFCs/CFCsMenus.xml.

• Items for context menus associated with ColdFusion data sources are specified in
Components/ColdFusion/DataSources/DataSourcesMenus.xml.

• Items for context menus associated with JavaBeans are specified in Components/
Jsp/JavaBeans/JavaBeanMenus.xml.

• Items for context menus associated with various server components are specified in XML files,
in subfolders of the Components folder.

About menus.xml tag syntax

The menus.xml file contains a structured list of menu bars, menus, menu items, separators,
shortcut lists, and keyboard shortcuts. These items are described by XML tags which you can edit
in a text editor.

Note: Be careful when making changes to menus. Dreamweaver ignores any menu or menu item that contains an
XML syntax error.

A menu bar (tagged with opening and closing menubar tags) is a discrete menu or set of menus—
for example, there’s a main menu bar, a separate Site window menu bar (which appears only in
Windows, not on the Macintosh), and a menu bar for each context menu. Each menu bar
contains one or more menus; a menu is contained in a menu tag. Each menu contains one or more
menu items, each described by a menuitem tag and its attributes. A menu can also contain
separators (described by separator tags) and submenus.

In addition to the keyboard shortcuts associated with menu items, Dreamweaver provides a
variety of other keyboard shortcuts, including alternate shortcuts and shortcuts that are available
only in certain contexts. For example, Control+Y (Windows) or Command+Y (Macintosh) is the
shortcut for Redo; but Control+Shift+Z or Command+Shift+Z is an alternate shortcut for Redo.
These alternates—and other shortcuts that can’t be represented in the tags for menu items—are
defined in shortcut lists in the menus.xml file. Each shortcut list (described by a shortcutlist
tag) contains one or more shortcuts, each described by a shortcut tag.

The following sections describe the syntax of the menus.xml tags. Optional attributes are marked
in the attribute lists with braces ({}); all attributes not marked with braces are required.
Customizing Macromedia Dreamweaver MX 13

<menubar>

Description

Provides information about a menu bar in the Dreamweaver menu structure.

Attributes

name, {app}, id, {platform}

name The name of the menu bar. Although name is a required attribute, you can give it the value "".

app The name of the application in which the menu bar is available. Not currently used.

id The menu ID for the menu bar. Each menu ID in the menus.xml file should be unique.

platform Indicates that the menu bar should appear only on the given platform. Valid values
are "win" and "mac".

Contents

This tag must contain one or more menu tags.

Container

None.

Example

The main (Document window) menu bar uses the following menubar tag:

<menubar name="Main Window" id="DWMainWindow">
<!-- menu tags here -->

</menubar>

<menu>

Description

Provides information about a menu or submenu to appear in the Dreamweaver menu structure.

Attributes

name, {app}, id, {platform}

name The name of the menu as it will appear in the menu bar. To set the menu’s access key
(mnemonic) in Windows, use an underscore (_) before the access letter. The underscore is
automatically removed on the Macintosh.

app The name of the application in which the menu is available. Not currently used.

id The menu ID for the menu. Every ID in the file should be unique.

platform Indicates that the menu should appear only on the given platform. Valid values are
"win" and "mac".

Contents

This tag can contain one or more menuitem tags, and one or more separator tags. It can also
contain other menu tags (to create submenus) and standard HTML comment tags.

Container

This tag must be contained in a menubar tag.

Example

<menu name="_File" id="DWMenu_File">
<!-- menuitem, separator, menu, and comment tags here -->

</menu>
14

<menuitem>

Description

Defines a menu item for a Dreamweaver menu.

Attributes

name, id, {app}, {key}, {platform}, {enabled}, {arguments}, {command}, {file},
{checked}, {dynamic}

name The menu item name that appears in the menu. An underscore indicates that the following
letter is the command’s access key (mnemonic), for Windows only.

id Used by Dreamweaver to identify the item. This ID must be unique throughout the menu
structure. If you add new menu items to menus.xml, ensure uniqueness by using your company
name or another unique string as a prefix for each menu item’s ID.

app The name of the application in which the menu item is available. Not currently used.

key The keyboard shortcut for the command, if any. Use the following strings to specify
modifier keys:

• Cmd specifies the Control key (Windows) or Command key (Macintosh).

• Alt and Opt interchangeably specify the Alt key (Windows) or Option key (Macintosh).

• Shift specifies the Shift key on both platforms.

• Ctrl specifies the Control key on both platforms.

• A plus (+) sign separates modifier keys if a given shortcut uses more than one modifier. For
example, Cmd+Opt+5 in the key attribute means the menu item is executed when the user
presses Control+Alt+5 (Windows) or Command+Option+5 (Macintosh).

• Special keys are specified by name: F1 through F12, PgDn, PgUp, Home, End, Ins, Del, Tab, Esc,
BkSp, and Space. Modifier keys can also be applied to special keys.

platform Indicates which platform the item appears on. Valid values are "win", meaning
Windows-only, or "mac", meaning Macintosh-only. If you don’t specify the platform attribute,
the menu item appears on both platforms. If you want a menu item to behave differently on
different platforms, supply two menu items with the same name (but different IDs): one with
platform="win" and the other with platform="mac".

enabled Provides JavaScript code (usually a JavaScript function call) that determines whether the
menu item is currently enabled. If the function returns false, the menu item is dimmed. The
default value is "true", but it’s best to always specify a value for clarity even if the value is "true".

arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file that
you specify in the file attribute. Enclose arguments in single quotation marks ('), inside the
double quotation marks used to delimit an attribute’s value.

command Specifies a JavaScript expression that’s executed when the user selects this item from the
menu. For complex JavaScript code, use a JavaScript file (specified in the file attribute) instead.
You must specify either file or command for each menu item.
Customizing Macromedia Dreamweaver MX 15

file The name of an HTML file containing JavaScript that controls the menu item. Specify a
path to the file relative to the Configuration folder. (For example, the Help > Welcome menu
item specifies file="Commands/Welcome.htm".) Note that the file attribute overrides the
command, enabled, and checked attributes. You must specify either file or command for each
menu item. For information on creating a command file using the History panel, see
Dreamweaver Help. For information on writing your own JavaScript commands, see Extending
Dreamweaver (Help > Extending Dreamweaver).

checked A JavaScript expression that indicates whether the menu item has a check mark next to
it in the menu; if the expression evaluates as true, the item is displayed with a check mark.

dynamic If present, indicates that a menu item is to be determined dynamically, by an HTML
file; the file contains JavaScript code to set the text and state of the menu item. If you specify a tag
as dynamic, you must also specify a file attribute.

isdomrequired Indicates whether to synchronize the Design view and the Code view before
executing the code for this menu item. Valid values are "true" (the default) and "false". If you
set this attribute to "false", it means that the changes to the file that this menu item makes do
not use the Dreamweaver DOM. For information about the DOM, see Extending Dreamweaver
(Help > Extending Dreamweaver).

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example

<menuitem name="_New" key="Cmd+N" enabled="true" command="dw.createDocument()"
id="DWMenu_File_New" />

<separator>

Description

Indicates that a separator should be displayed at the corresponding location in the menu.

Attributes

{app}
app The name of the application in which the separator is shown. Not currently used.

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example

<separator />
16

<shortcutlist>

Description

Specifies a shortcut list in the menus.xml file.

Attributes

{app}, id, {platform}

app The name of the application in which the shortcut list is available. Not currently used.

id The ID for the shortcut list. It should be the same as the menu ID for the menu bar (or
context menu) in Dreamweaver that the shortcuts are associated with. Valid values are
"DWMainWindow", "DWMainSite", "DWTimelineContext", and "DWHTMLContext".

platform Indicates that the shortcut list should appear only on the given platform. Valid values
are "win" and "mac".

Contents

This tag can contain one or more shortcut tags. It can also contain one or more comment tags
(which use the same syntax as HTML comment tags).

Container

None.

Example

<shortcutlist id="DWMainWindow">
<!-- shortcut and comment tags here -->

</shortcutlist>

<shortcut>

Description

Specifies a keyboard shortcut in the menus.xml file.

Attributes

key, {app}, {platform}, {file}, {arguments}, {command}, id, {name}

key The key combination that activates the keyboard shortcut. For syntax details, see
“<menuitem>” on page 15.

app The name of the application in which the shortcut is available. Not currently used.

platform Specifies that the shortcut works only on the indicated platform. Valid values are
"win" and "mac". If you do not specify this attribute, the shortcut works on both platforms.

file The path to a file containing the JavaScript code that Dreamweaver executes when you
use the keyboard shortcut. The file attribute overrides the command attribute. You must specify
either file or command for each shortcut.

arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file that
you specify in the file attribute. Enclose arguments in single quotation marks ('), inside the
double quotation marks used to delimit an attribute’s value.

command The JavaScript code that Dreamweaver executes when you use the keyboard shortcut.
Specify either file or command for each shortcut.

id A unique identifier for a shortcut.
Customizing Macromedia Dreamweaver MX 17

name A name for the command executed by the keyboard shortcut, in the style of a menu item
name. For example, the name attribute for the F12 shortcut is "Preview in Primary Browser".

Contents

None (empty tag).

Container

This tag must be contained in a shortcutlist tag.

Example

<shortcut key="Cmd+Shift+Z" file="Menus/MM/Edit_Clipboard.htm"
arguments="’redo’" id="DWShortcuts_Edit_Redo" />

Customizing code hints
To customize the code hints pop-up menus in Dreamweaver, edit the CodeHints.xml file. In
general, you modify this file by writing an extension rather than by editing the file by hand; for
more information, see Extending Dreamweaver (Help > Extending Dreamweaver).

Customizing default documents
The DocumentTypes/NewDocuments folder contains a default (blank) document of each type
that you can create using Dreamweaver. When you create a new blank document by choosing File >
New and selecting an item from the Basic Page, Dynamic Page, or Other categories, Dreamweaver
bases the new document on the appropriate default document in this folder. To change what
appears in a default document of a given type, edit the appropriate document in this folder.

Note: If you want all the pages in your site to contain common elements (such as a copyright notice) or a common
layout, it’s better to use templates and library items than to change the default documents. For more information on
templates and library items, see Dreamweaver Help (Help > Using Dreamweaver).

Customizing page designs
Dreamweaver provides a variety of predesigned CSS style sheets, framesets, and page designs. You
can create pages based on these designs by choosing File > New.

To customize the available designs, edit the files in BuiltIn/css, BuiltIn/framesets, BuiltIn/
Templates, and BuiltIn/TemplatesAccessible. Note that the designs listed in the Page Designs and
Page Designs (Accessible) categories are actually Dreamweaver template files; for more
information on templates, see Dreamweaver Help (Help > Using Dreamweaver).

You can also create your own page designs by adding files to the subfolders of the BuiltIn folder.
To make a description of the file appear in the New Document dialog box, create a Design Notes
file (in the appropriate _notes folder) corresponding to the page design file.

Creating and modifying toolbars
You can rearrange or delete items in the toolbars provided with Dreamweaver (such as the
Document toolbar and the Standard toolbar) by editing the Toolbars/toolbars.xml file.

To create a new toolbar, you generally need to create both XML files to specify the controls in the
toolbar, and commands to perform the associated actions.

For more information about creating toolbars and editing the toolbars.xml file, see Extending
Dreamweaver (Help > Extending Dreamweaver).
18

Creating new document types
Dreamweaver configuration files specify filename extensions, server models, and other information
for each type of document that Dreamweaver recognizes. To add a new document type to
Dreamweaver or to change information about a known document type, either edit the
DocumentTypes/MMDocumentTypes.xml file, or create another XML file using the same format.
You generally modify and create such files by writing an extension rather than by editing the files by
hand; for more information, see Extending Dreamweaver (Help > Extending Dreamweaver).

Customizing the Tag Chooser
Dreamweaver configuration files provide metadata for organizing tag groupings that appear in the
Tag Chooser. By editing a TagChooser.xml file (in a subfolder of the TagLibraries folder), you can
regroup existing tags and group new tags. In general, you modify and create these files by writing
an extension rather than by editing the files by hand; for more information, see Extending
Dreamweaver (Help > Extending Dreamweaver).

Customizing the appearance of dialog boxes
The dialog box layouts for objects, commands, and behaviors are specified as HTML forms; they
reside in HTML files in the Configuration folder within the Dreamweaver application directory.
You edit those forms just as you would edit any form in Dreamweaver; for more information, see
Dreamweaver Help.

Note: Remember that in a multiuser operating system, you should edit copies of configuration files in your user
configuration folder rather than editing master configuration files; for more information, see “About customizing
Dreamweaver in a multiuser environment” on page 2.

To change the appearance of a dialog box:

1 In Dreamweaver, choose Edit > Preferences, then choose the Code Rewriting category.

2 Deselect the Rename Form Items when Pasting option.

Deselecting this option ensures that form items retain their original names when you copy
and paste them.

3 Click OK to dismiss the Preferences dialog box.

4 On your disk, find the appropriate .htm file in Configuration/Objects, Configuration/
Commands, or Configuration/Behaviors.

5 Make a copy of the file, somewhere other than the Configuration folder.

6 Open the copy in Dreamweaver, edit the form, and save it.

7 Quit Dreamweaver.

8 Copy the changed file back to the Configuration folder, in place of the original. (It’s a good
idea to first make a backup of the original, so you can restore it later if you need to.)

9 Start Dreamweaver again to see the changes.

You should change only the appearance of the dialog box, not how it works; it still must contain
the same types of form elements with the same names, so that the information Dreamweaver
obtains from the dialog box can still be used in the same way.
Customizing Macromedia Dreamweaver MX 19

For example, the Comment object takes text input from a text area in a dialog box, then uses a
simple JavaScript function to turn that text into an HTML comment and insert the comment
into your document. The form that describes the dialog box is in Configuration/Objects/
Invisibles/Comment.htm. You can open that file and change the size and other attributes of the
text area, but if you remove the textarea tag entirely, or change the value of its name attribute,
the Comment object will no longer work properly.

Changing default HTML formatting
To change general code formatting preferences, use the Code Format category of the Preferences
dialog box. To change the format of specific tags and attributes, use the Tag Library Editor (Edit >
Tag Libraries). For more information, see Dreamweaver Help.

You can also edit the formatting for a tag by hand-editing the .vtm file corresponding to the tag
(in a subfolder of the Tag Libraries configuration folder), but it’s much easier to change
formatting within Dreamweaver.

If you add or remove a .vtm file, you must edit the TagLibraries.vtm file; Dreamweaver ignores any
.vtm file that isn’t listed in TagLibraries.vtm. (Edit this file in a text editor, not in Dreamweaver.)
For more information, see Extending Dreamweaver (Help > Extending Dreamweaver).

Working with browser profiles
Browser profiles are the files Dreamweaver uses to check your documents when you run a target
browser check (see Dreamweaver Help). Each profile contains information about the HTML tags
and attributes that a particular browser supports. A browser profile can also contain warnings,
error messages, and suggestions for tag substitutions.

Browser profiles are stored in the Configuration/BrowserProfiles folder within the Dreamweaver
application folder. You can edit existing profiles or create new ones using Dreamweaver or a text
editor (such as BBEdit, HomeSite, Notepad, or SimpleText). It is not necessary to quit
Dreamweaver before editing or creating browser profiles.

About browser-profile formatting

Browser profiles follow a specific format. To avoid parsing errors during target browser checks,
follow these rules when editing or creating profiles:

• The first line is reserved for the name of the profile. It must be followed by a single carriage
return. The name on this line appears in the Target Browser Check dialog box and in the target
check report. It must be unique.

• The second line is reserved for the designator PROFILE_TYPE=BROWSER_PROFILE.
Dreamweaver uses this line to determine which documents are browser profiles. Do not change
or move this line.

• Two hyphens (--) at the beginning of a line indicate a comment (that is, that the line will be
ignored during the target check process). A comment must start at the beginning of a line—
you can’t put two hyphens in the middle of a line.

• You must use a space in these places: before the closing angle bracket (>) on the !ELEMENT line,
after the opening parenthesis in a list of values for an attribute, before a closing parenthesis in a
list of values, and before and after each pipe (|) in a list of values.

• You must include an exclamation point without a space before each of the following words:
ELEMENT, ATTLIST, Error, and msg (!ELEMENT, !ATTLIST, !Error, !msg).
20

• You can include !Error and !Warning within the !ELEMENT or the !ATTLIST area.

• !msg messages can contain only plain text.

• HTML comments (<!-- -->) cannot be listed as tags in browser profiles because they
interfere with parsing. Dreamweaver does not report an error for comments, because all
browsers support them.

The syntax for a tag entry is as follows:

<!ELEMENT htmlTag NAME="tagName" >
<!ATTLIST htmlTag
unsupportedAttribute1!Error !msg="The unsupportedAttribute1
attribute of the htmlTag tag is not supported. Try using
supportedAttribute1 for a similar effect."
supportedAttribute1
supportedAttribute2(validValue1 | validValue2 | validValue3)
unsupportedAttribute2!Error !msg="Don’t ever use the
unsupportedAttribute2 attribute of the htmlTag tag!"
>

The elements shown in the above syntax are defined as follows:

htmlTag is the tag as it appears in an HTML document.

tagName is an explanatory name for the tag; for example, the name for the HR tag is “Horizontal
Rule.” The NAME attribute is optional. If specified, tagName is used in error messages; if you do
not supply a name, htmlTag is used in error messages.

unsupportedAttribute is an attribute that is not supported. Any tags or attributes not
specifically mentioned as supported attributes are assumed to be unsupported. Specify
unsupported tags or attributes only when you want to create a custom error message.

supportedAttribute is an attribute that is supported by htmlTag. Only tags listed without an
!Error designation are considered to be supported by the browser.

validValue indicates a value that is supported by the attribute.

The following example shows an entry for the APPLET tag that would be accurate for Navigator 3:

<!ELEMENT APPLET Name="Java Applet" >
<!ATTLIST APPLET

Align (top | middle | bottom | left | right | absmiddle |
absbottom | baseline | texttop)
Alt
Archive
Class !Warning !msg="This browser ignores the CLASS attribute for the APPLET
tag."
Code
Codebase
Height
HSpace
ID !Warning !msg="This browser ignores the ID attribute for the APPLET tag.
Use NAME instead."
Name
Style !Warning !msg="This browser ignores the STYLE attribute for the APPLET
tag."
VSpace
Width

>

Customizing Macromedia Dreamweaver MX 21

Creating and editing a browser profile

Create a browser profile by modifying an existing profile. For example, to create a profile for a
future version of Microsoft Internet Explorer, you can open the profile for the most recent version
of Internet Explorer that has a profile, add any new tags or attributes introduced in the new
version, and save it as a profile for the new version.

Note: Before you create a browser profile for a new version of a browser, check the Macromedia Exchange for
Dreamweaver site at www.macromedia.com/exchange/dreamweaver to see if Macromedia has supplied a browser
profile that you can download and install using the Extension Manager.

To create or edit a browser profile:

1 Using a text editor, open an existing profile.

If you’re creating a new profile, open the profile that most closely resembles the profile you
intend to create, then save the file under a new filename.

2 If you’re creating a new profile, change the name that appears on the first line of text in the file.
(Two profiles cannot have the same name.)

3 Add any new tags or attributes that you know are supported by the browser, using the syntax
shown in “About browser-profile formatting” on page 20.

If you don’t want to receive error messages about a particular unsupported tag, add it to the list
of supported tags. If you do this, save the profile in a separate file with a new filename (such as
Browsername x.x limited). Giving this alternate profile a new name preserves the original
profile with only the tags that are truly supported.

4 Delete any tags or attributes that are not supported by the browser.

This step is probably unnecessary if you are creating a profile for a new version of Netscape
Navigator or Internet Explorer, because browsers rarely drop support for tags.

5 Add any custom error messages according to the syntax shown in “About browser-profile
formatting” on page 20.

The profiles that come with Dreamweaver list all supported tags for the specified browsers. To
add a custom error message to a tag, add !msg="message" after !Error. For example, this
information appears in the Netscape Navigator 3.0 profile (along with other attributes not
shown here):

<!ELEMENT HR name="Horizontal Rule" >
<!ATTLIST HR

COLOR !Error
>

To add a custom error message enter !msg= and then your error message, in quotation marks:

<!ELEMENT HR name="Horizontal Rule" >
<!ATTLIST HR

COLOR !Error !msg="Internet Explorer 3.0 supports the COLOR tag in
horizontal rules, but Netscape Navigator 3.0 does not."

>

6 You can use !Error for all error situations, or you can use !Warning to indicate that a tag will
be ignored but will not actually cause an error.
22

Extending Dreamweaver: Basics
Dreamweaver is designed to be extensible. It includes a JavaScript interpreter, so it can read and
execute JavaScript code; and it provides a set of extensibility APIs (application programming
interfaces); each extensibility API is a set of JavaScript or C functions that enable extension developers
to add capabilities to Dreamweaver. Dreamweaver also provides a Document Object Model (DOM),
which allows extensions to examine and modify a document’s structure and contents.

Using the extensibility APIs, you can create a variety of different kinds of extensions to
Dreamweaver, including objects, commands, toolbars, Property inspectors, behavior actions,
server behaviors, data sources, server models, and data translators, among others.

You can also create new objects and simple commands without knowing anything about
programming; for more information, see “Creating a simple object” on page 7 and Dreamweaver
Help. But to add more advanced capabilities to Dreamweaver, you must write extensions in either
JavaScript or C. For information about the APIs and the DOM, see Extending Dreamweaver
(Help > Extending Dreamweaver).

After you create a Dreamweaver extension, you can package it and distribute it on the
Macromedia Exchange site if you want other Dreamweaver users to be able to use it. For more
information, choose Help > Creating and Submitting Extensions, or see the Macromedia
Exchange for Dreamweaver site at www.macromedia.com/exchange/dreamweaver.

About JavaScript

JavaScript is an interpreted programming language. To learn more about JavaScript, read a good
JavaScript book, such as JavaScript Bible by Danny Goodman (IDG) or JavaScript: The Definitive
Guide by David Flanagan (O’Reilly). For information on using JavaScript to extend
Dreamweaver, see Extending Dreamweaver (Help > Extending Dreamweaver).

Note: Despite the resemblance between the two names, JavaScript is not related to Java.

Editing Dreamweaver commands

All the commands in Dreamweaver menus, including those you create and save using the History
panel (see Dreamweaver Help), are implemented in JavaScript. This JavaScript code usually
consists mostly of calls to functions provided by the Dreamweaver extensibility API. If you know
JavaScript and understand the Dreamweaver extensibility API, you can edit the JavaScript to
change the operation of Dreamweaver commands.

Note: Don’t attempt to change any JavaScript code unless you’re certain you know what you’re doing. Even if you
do know what you’re doing, make a backup copy of the file containing the code before you modify it.

To rename a command, move a command to a different menu, or add a keyboard shortcut to a
command, see “About customizing Dreamweaver menus” on page 9.

Customizing the interpretation of third-party tags
Server-side technologies such as ASP, ColdFusion, JSP, and PHP use special non-HTML code in
HTML files; servers create and serve HTML content based on that code. When Dreamweaver
encounters non-HTML tags, it compares them with information in its third-party tag files, which
define how Dreamweaver reads and displays non-HTML tags.
Customizing Macromedia Dreamweaver MX 23

For example, ASP files contain—in addition to regular HTML—ASP code for the server to
interpret. ASP code looks almost like an HTML tag, but is marked by a pair of delimiters: it
begins with <% and ends with %>. The Dreamweaver Configuration/ThirdPartyTags folder
contains a file named Tags.xml, which describes the format of various third-party tags, including
ASP code, and defines how Dreamweaver displays that code. Because of the way ASP code is
specified in Tags.xml, Dreamweaver doesn’t try to interpret anything between the delimiters;
instead, in the Document window’s Design view, it simply displays an icon indicating ASP code.

You can define your own tag database files that define how Dreamweaver reads and displays your
tags. Create a new tag database file for each set of tags, to tell Dreamweaver how to display the tags.

Note: This section explains how to define the way Dreamweaver displays a custom tag, but doesn’t describe
how to provide a way to edit the content or properties of a custom tag. For information on how to create a
Property inspector to inspect and change the properties of a custom tag, see Extending Dreamweaver (Help >
Extending Dreamweaver).

Each tag database file defines the name, type, content model, rendering scheme, and icon for one
or more custom tags. You can create any number of tag database files, but all of them must reside
in the Configuration/ThirdPartyTags folder to be read and processed by Dreamweaver. Tag
database files have the file extension .xml.

Tip: If you are working on several different unrelated sites at once (for example, as a freelance developer), you can
put all the tag specifications for a particular site in one file. Then simply include that tag database file with the custom
icons and Property inspectors that you hand over to the people who will maintain the site.

You define a tag specification with an XML tag called tagspec. For example, the following code
describes the specification for a tag named happy:

<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"
content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>

You can define two different kinds of tags using tagspec: normal HTML-style tags and string-
delimited tags. String-delimited tags start with one string and end with another string; they’re like
empty HTML tags (such as img) in that they don’t surround content and don’t have closing tags.
The happy tag shown above is a normal HTML-style tag; it starts with an opening <happy> tag,
contains data between opening and closing tags, and ends with a closing </happy> tag. (If the tag
were a string-delimited tag, the tag specification would include the start_string and
end_string attributes.) An ASP tag is a string-delimited tag; it starts with the string <% and ends
with the string %>, and it has no closing tag.

The following information describes the attributes and valid values for the tagspec tag. Attributes
marked with an asterisk (*) are ignored for string-delimited tags. Optional attributes are marked in
the attribute lists with braces ({}); all attributes not marked with braces are required.

<tagspec>

Description

Provides information about a third-party tag.

Attributes

tag_name, {tag_type}, {render_contents}, {content_model}, {start_string},
{end_string}, {detect_in_attribute}, {parse_attributes}, icon, icon_width,
icon_height, {equivalent_tag}, {is_visual}, {server_model}
24

tag_name The name of the custom tag. For string-delimited tags, tag_name is used only to
determine whether a given Property inspector can be used for the tag. If the first line of the
Property inspector contains this tag name with an asterisk on each side, then the inspector can be
used for tags of this type. For example, the tag name for ASP code is ASP; Property inspectors that
can examine ASP code should have *ASP* on the first line. For information on the Property
inspector API, see Extending Dreamweaver (Help > Extending Dreamweaver).

tag_type* Determines whether the tag is empty (as with img), or whether it contains anything
between its opening and closing tags (as with code). This attribute is required for normal (non-
string-delimited) tags. It’s ignored for string-delimited tags, since they’re always empty. Valid
values are "empty" and "nonempty".

render_contents* Determines whether the contents of the tag should appear in the
Document window’s Design view, or whether the specified icon appears instead. This attribute is
required for nonempty tags, and ignored for empty tags. (Empty tags have no content.) This
attribute applies only to tags that appear outside of attributes; the contents of tags that appear
inside the values of attributes of other tags are not rendered. Valid values are "true" or "false".

content_model* Describes what kinds of content the tag can contain and where in an HTML
file the tag can appear. Valid values are "block_model", "head_model", "marker_model", and
"script_model":

• block_model Specifies that the tag can contain block-level elements such as div and p, and
that the tag can appear only in the body section or inside other body-content tags such as div,
layer, or td.

• head_model Specifies that the tag can contain text content, and that it can appear only in the
head section.

• marker_model Specifies that the tag can contain any valid HTML code, and that it can
appear anywhere in an HTML file. The HTML validator in Dreamweaver ignores tags that are
specified as marker_model. However, the validator doesn’t ignore the contents of such a tag; so
even though the tag itself can appear anywhere, the contents of the tag may result in invalid
HTML in certain places. For example, plain text can’t appear (outside of a valid head element)
in the head section of a document, so you can’t place a marker_model tag that contains plain
text in the head section. (To place a custom tag containing plain text in the head section,
specify the tag’s content model as head_model instead of marker_model.) Use marker_model
for tags that should be displayed inline (inside a block-level element such as p or div—for
example, inside a paragraph). If the tag should be displayed as a paragraph of its own, with line
breaks before and after it, don’t use this model.

• script_model Allows the tag to exist anywhere between the opening and closing HTML tags
of a document. When Dreamweaver encounters a tag with this model, it ignores all of the tag’s
content. Used for markup (such as certain ColdFusion tags) that Dreamweaver shouldn’t parse.

start_string Specifies a delimiter that marks the beginning of a string-delimited tag. String-
delimited tags can appear anywhere in the document where a comment can appear. Dreamweaver
does not parse tags or decode entities or URLs between start_string and end_string. This
attribute is required if end_string is specified.

end_string Specifies a delimiter that marks the end of a string-delimited tag. This attribute is
required if start_string is specified.
Customizing Macromedia Dreamweaver MX 25

detect_in_attribute Indicates whether to ignore everything between start_string and
end_string (or between opening and closing tags if those strings aren’t defined) even when those
strings appear inside attribute names or values. You should generally set this to "true" for
string-delimited tags; the default is "false". For example, ASP tags sometimes appear inside
attribute values, and sometimes contain quotation marks ("); because the ASP tag specification
specifies detect_in_attribute="true", Dreamweaver ignores the ASP tags, including the
internal quotation marks, when they appear inside attribute values.

parse_attributes* Indicates whether to parse the attributes of the tag. If this is set to "true"
(the default), Dreamweaver parses the attributes; if it’s set to "false", Dreamweaver ignores
everything until the next closing angle bracket that appears outside quotation marks. For
example, this attribute should be set to "false" for a tag like cfif (as in <cfif a is 1>, which
Dreamweaver would be unable to parse as a set of attribute name/value pairs).

icon Specifies the path and filename of the icon associated with the tag. This attribute is
required for empty tags, and for nonempty tags whose contents are not displayed in the
Document window’s Design view.

icon_width Specifies the width of the icon in pixels.

icon_height Specifies the height of the icon in pixels.

equivalent_tag Specifies simple HTML equivalents for certain ColdFusion form-related tags.
Not intended for use with other tags.

is_visual Indicates whether the tag has a direct visual effect on the page or not. For example,
the ColdFusion tag cfgraph doesn’t specify a value for is_visual (so the value defaults to
"true"); the ColdFusion tag cfset is specified as having is_visual set to "false". Visibility
for server markup tags is controlled by the Invisible Elements category of the Preferences dialog
box; visibility for visual server markup tags can be set independent of visibility for nonvisual
server markup tags.

server_model If specified, indicates that the tagspec tag applies only on pages belonging to
the specified server model. If server_model is not specified, the tagspec tag applies on all pages.
For example, the delimiters for ASP and JSP tags are the same, but the tagspec tag for JSP
specifies a server_model of "JSP", so when Dreamweaver encounters code with the appropriate
delimiters on a JSP page, it displays a JSP icon. When it encounters such code on a non-JSP page,
it displays an ASP icon.

Contents

None (empty tag).

Container

None.

Example

<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"
content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>
26

How custom tags appear in the Design view

How custom tags appear in the Design view of the Document window depends on the values of
the tag_type and render_contents attributes of the tagspec tag. (See “Customizing the
interpretation of third-party tags” on page 23.) If the value of tag_type is "empty", the icon
specified in the icon attribute appears. If the value of tag_type is "nonempty" but the value of
render_contents is "false", the icon appears as it would for an empty tag. For example, an
instance of the happy tag defined earlier might appear in the HTML like this:

<p>This is a paragraph that includes an instance of the <code>happy</code>
tag (<happy>Joe</happy>).</p>

That paragraph might appear in the Design view like this.

Note that since render_contents is set to "false" in the tag specification, the contents of the
happy tag (the word Joe) are not rendered; instead the start and end tags and their contents are
displayed as a single icon.

For nonempty tags that have a render_contents value of "true", the icon does not appear in
the Design view; instead, the contents between the opening and closing tags (such as the text
between the tags in <mytag>This is the contents between the opening and closing
tags</mytag>) appears. If View > Invisible Elements is enabled, the content is highlighted using
the third-party tag color specified in Highlighting preferences. (Note that highlighting applies
only to tags defined in tag database files.)

To change the highlighting color of third-party tags:

1 Choose Edit > Preferences and select the Highlighting category.

2 Click the Third-Party Tags color box to display the color picker.

3 Choose a color, and then click OK to close the Preferences dialog box. For information about
choosing a color, see Dreamweaver Help.

Avoiding rewriting third-party tags

Dreamweaver corrects certain kinds of errors in HTML code (for details, see Dreamweaver Help).
By default, Dreamweaver refrains from changing HTML in files with certain filename extensions,
including .asp (ASP), .cfm (ColdFusion), .jsp (JSP), and .php (PHP). This default is set so that
Dreamweaver won’t accidentally modify the code contained in any such non-HTML tags. You
can change the Dreamweaver default rewriting behavior so that it rewrites HTML when it opens
such files, and you can add other file types to the list of types that Dreamweaver doesn’t rewrite.

Note that Dreamweaver encodes certain special characters (by replacing them with numerical
values) when you enter them in the Property inspector. It’s usually best to let Dreamweaver
perform this encoding, because the special characters will be more likely to display correctly across
platforms and browsers. However, because such encoding may interfere with third-party tags, you
may want to change the Dreamweaver encoding behavior when you’re working with files
containing third-party tags.
Customizing Macromedia Dreamweaver MX 27

To allow Dreamweaver to rewrite HTML in more kinds of files:

1 Choose Edit > Preferences and select the Code Rewriting category.

2 Select either of the following options:

• Fix Invalidly Nested and Unclosed Tags

• Remove Extra Closing Tags

3 Do one of the following:

• Delete one or more extensions from the list of extensions in the Never Rewrite Code: In Files
with Extensions option.

• Deselect the Never Rewrite Code: In Files with Extensions option. (Deselecting this option
allows Dreamweaver to rewrite HTML in all types of files.)

To add file types that Dreamweaver should not rewrite:

1 Choose Edit > Preferences and select the Code Rewriting category.

2 Select either of the following options:

• Fix Invalidly Nested and Unclosed Tags

• Remove Extra Closing Tags

3 Make sure the Never Rewrite Code: In Files with Extensions option is selected, and add the
new file extensions to the list in the text field.

If the new file type doesn’t appear in the file-types pop-up menu in the File > Open dialog box,
you may want to add it to the Configuration/Extensions.txt file. For details, see “Changing the
default file type” on page 4.

To turn off Dreamweaver encoding options:

1 Choose Edit > Preferences and select the Code Rewriting category.

2 Deselect either or both Special Characters options.

For information on the other Code Rewriting preferences, see Dreamweaver Help.
28

	Customizing Macromedia Dreamweaver MX
	About customizing Dreamweaver
	About customizing Dreamweaver in a multiuser environment
	Deleting configuration files in a multiuser environment
	About mm_deleted_files.xml tag syntax
	<deleteditems>
	<item>
	Reinstalling and uninstalling Dreamweaver in a multiuser environment

	Changing the default file type
	Modifying the Insert bar
	Creating a simple object
	Changing FTP mappings
	About customizing Dreamweaver menus
	Modifying the Commands menu
	Rearranging menus and menu items
	Changing the name of a menu item or menu
	Changing keyboard shortcuts
	Modifying pop-up menus and context menus
	About menus.xml tag syntax
	<menubar>
	<menu>
	<menuitem>
	<separator>
	<shortcutlist>
	<shortcut>

	Customizing code hints
	Customizing default documents
	Customizing page designs
	Creating and modifying toolbars
	Creating new document types
	Customizing the Tag Chooser
	Customizing the appearance of dialog�boxes
	Changing default HTML formatting
	Working with browser profiles
	About browser-profile formatting
	Creating and editing a browser profile

	Extending Dreamweaver: Basics
	About JavaScript
	Editing Dreamweaver commands

	Customizing the interpretation of third�party tags
	<tagspec>
	How custom tags appear in the Design view
	Avoiding rewriting third-party tags

