
DLXS

Update on Plans



About Today

Our current thinking.
A chance to discuss.

Not an unveiling.

We want you to share your opinions and your expertise.



Goals

Create a new and improved DLXS that serves MLibrary’s 
needs for preservation and access in areas not served by other 
repository systems or where DLXS functionality provides a 
clear advantage, especially to end-users.



What about HathiTrust?

Original functional objectives met.
The effort is shared by all members.
Everything will go into HathiTrust... eventually.



What about MLibrary?

97 image collections
126 text collections
Finding aids are hot
MPublishing is expanding



Ten Meetings in May

1. Strengths and Weaknesses of DLXS
2. Brief Survey of Digital Library Systems
3. Collections
4. Repository Relationships
5. Metadata and Content Structure Mapping
6. Indexing
7. APIs
8. User Interface
9. Content Loading and Indexing Workflow

10. Shared Services



 Wishes...

Virtual collections of mixed content
Collection building tools
Repository wide search
Other search engines
Modern UI
Publishing tools
Interoperability
Simplified and automated loading
Better code management and distribution
Faster performance



Strengths and Weaknesses of DLXS

DLXS is an access system more than it is a repository system, 
but it is both.



Brief Survey of Digital Library Systems

The most robust repositories are weak on access.
The most robust access systems are weak repositories.
Trend may be toward choosing a repository first.
Access systems are typically built for a specific repository.



Collections

The ability to build and share collections, at every scale, is 
very practical functionality essential to the work of libraries 
and individuals.
Collecting, ideally, spans all content types, and sources.
Once a collection exists, possibilities emerge for specialized 
access to the materials.



Repository Relationships

Repository Agnostic

It would be very useful to have an access system that could 
work with a mix of common data sources/repositories.



Metadata & Content Structure Mapping

A Mapping Tool

Much of what we do to prepare data and deploy a collection 
can be considered mapping. We map elements for ingest, 
transformation, indexing, searching, display, and distribution. 
This work needs to be easier.



Indexing 1/3

Search Engine Options
The code, and our content deployment decisions, are too 
dependent on the capabilities of XPat.
Solid, complete, search engine integration is good.
Broader, architectural, dependency of a system on a 
particular search engine is constraining, and that’s where 
we are now.



Indexing 2/3

Versatility and Creativity

Functionality is often bounded by the capabilities of a search 
engine or chosen indexing method. Collections are like sub-
climates of content, with potential for deeper understanding and 
exploration. 



Indexing 3/3

Full Repository Searching

The ability to search across the full body of content in a system 
is important too, and lacking in the current DLXS.



APIs

Separate, Interoperable, Integrable
All uses of the content cannot be anticipated and separation of 
content from style and functionality simplifies and encourages 
use.
Versioning of an API stabilizes its use by allowing UIs (and 
other clients) to lock-in on the version, and be protected from 
changes as long as that version is maintained.



User Interface

Currently, customizations often require code-diving, resulting in 
difficult maintenance and migrations in the future.

We need to spend less time doing routine configuration and 
customization of interfaces.
Accessibility issues must be addressed.



Content Loading and Indexing Workflow

We can reduce the amount of time we spend on repetitive, 
mundane tasks by establishing requirements, sharing 
recommendations, automating processes, building better tools, 
and involving content providers, and content selectors, directly 
in the process. 

The payoff is more, higher quality content, faster turn-around, 
fewer problems, and more time to do other, possibly exciting, 
things.



Shared Services

Cloud Potential

If DLXS becomes a system interoperable with multiple 
repositories, we, or anyone, could provide hosted services for 
remote repositories. For example, institutions using DSpace 
could contract with us to provide indexing and access services.



HathiTrust: A Growing Experience

Ingest quantity, quality, diversity and interoperability
Repository standards, reliability
Catalog integration
Indexing automation, completeness, and performance
Search scale and performance
Rights management and access control
Page image delivery quality and speed
Collections big, small and dynamic
Search repository wide, within collection, within item
Development in a secure and collaborative environment
Complete system replication



But do we need DLXS to scale to 
HathiTrust proportions?
Storage, hits per second, search response time, etc.

Automation, workflow efficiency, increased productivity.

Lowering the bar on technical expertise and sharing the effort 
more widely, involving more people.

Capability to work across institutional boundaries to collectively 
solve problems.



More Goals for DLXS

Give precedence to scale by building core functionality that 
broadly accommodates content with minimal intervention. 

Provide a path for evolutionary progression of functionality so 
that advanced features can be deployed for special content 
and/or advanced users.
Build a system that accelerates content deployment by 
providing powerful tools that simplify workflow and allow 
content providers to be involved in a more direct and 
collaborative manner.



Availability of Resources

Michigan's intense focus on HathiTrust development can give 
way to DLXS being the top priority.

HathiTrust development effort will become increasingly shared 
across institutions.



Likely Features of the Next DLXS

Basic Architecture
Repository
Search
Content Ingest/Deployment
Collections
User Interface
Access APIs
Security
Distribution, Installation and Migration
Usage Statistics
Broadly Discoverable
DLXS on the Cloud



Basic Architecture

Separate, interoperable, parts
Repository
Search engine
API
UI framework 

Virtual Collections
Robust support for virtual collections, including alternative 
indexing methods, and template themes.



Repository

Repository agnostic
Access layer
Pair it with one or more repositories
Includes simple, useful repository of its own



Search

Across All Items
Catalog
Full-text
Browse
Alternative

used for collections or specific content types
e.g. structured text



Collections

Powerful collection building tools for collections large and small.



User Interface

Customizable
Accessible
Multilingual
Mobile
Shareable

Citations
Creative Commons / Rights and reproductions



Access APIs

Strictly versioned for reliable integration with applications
Supports content sharing standards (e.g,. OAI, Atom)



Distribution, Installation and Migration

Entirely Open Source
Distributed through popular code sharing sites
Designed for ease of migration from one version of DLXS to 
the next, in part by separation of content from functionality 
and style.



Usage Statistics

Easy integration of analytics tools.



Broadly Discoverable

Optimized for search engines.


