%P HATHI'TRUST

a shared digital repository

HathiTrust Large Scale Search

Tom Burton-West
Information Retrieval Programmer
August 19th 2010

Challenges

e Goal: Design a system for full-text search that
will scale to 7 million -20 million volumes (at a
reasonable cost.)

* Challenges:
— Must scale to 20 million full-text volumes

— Very long documents compared to most large-scale search
applications

— Multilingual collection
— OCR quality varies

www.hathitrust.org

growth trajectory

20000000
18000000
16000000
14000000
12000000
10000000
8000000
6000000
4000000
2000000

SYSNNNNNS SN

www.hathitrust.org

Long Documents

* Average HathiTrust document is 700KB Average Document Size

containing over 100,000 words. 200

— Estimated size of 7 million Document <
collection is 4.5TB. s &0

* Average HathiTrust document is about 38 § 400

times larger than the average document 2 200

size of 18KB used in Large Research test z | | |

collections HathiTrust ~ TREC GOV2 SPIRIT NW1000G-04
Collection Size Documents Average Doc size
HathiTrust 4.5 TB (projected) | 7 million 700 KB
TREC GOV2 0.456 TB 25 million 18 KB
SPIRIT 1TB 94 million 10 KB
NW1000G-04 1.3 TB* 100 million 16 KB

www. hathitrust.org

Multilingual

e 400+ languages, 40 languages with over 1,000
volumes (some volumes in multiple languages)

e Currently all languages in one index

* Lowest common denominator tokenizing
 Some languages are challenging for Information
Retrieval
— CJK
— Arabic

— Vietnamese

www. hathitrust.org

OCR

 The OCR varies in
quality

* This makes the index
larger and slower

 Example: Hebrew
characters not
recognized

112 2702 148

TR 587 YOR IR DWYNIR TR T IPPUDIRIVIR MR X URAYL BN
SHRARA PYEWIPT X YYORYBD W JUOPYT R LRAYA MYRWwH LRI O¥N
pNS YPRL LBAWIYI DIWTIVRI P AR TR JYRYN WS DR 7P YYD
DA 12PWYs X LRAYI ORT LRA IXIPT WPuBK YIPITIR DD ARy W1
TPIPEYL UK LYY TODA Y LRI LLPIYRRT NI LR Y ORN PR
ST OIXIRD JIWAR IRIWYX OY IR

"B IR M PRI WPIRTADYNE YT LITIR WD W LTDW LIOR
WD DY T I OIRT M DX AP ND PIRDI OYT IR FIyORwya
PR ESO™AY Y IR IPONRA X IPRIWYY ORT T » 1aNa yen ovT
YRIRZ 0T AR PR LGTO) VW T LIYNYI KT IV T LRAR PR T
LR CPIR UXOR IETE M IPAR GRIRD BT IPINVT VT IX LLINIYR UMY
LOTYTIERT PIPTTIR 19U IX APV IWTTIR WPLOM (YR PH

IITer 7-11JT

14

px "PEBR yw'"?x px DiByaix TS8J 'lf T pPYBIJTEKSTHX HBXS X
'I>onDTa ipyatnyi 1 Ty=yBo wWin 1BopyT S BIXITva —,

B'11 ? ¥PXEB BNy DivijiTxa T P3XJI Ta lyvayn ixs

SsBXITI¥JIOos81l BSJL 1X13%¥ 1

=T I

SOl Y ' lexs

Ta 1< ,1 ¥ 1> I1=

1T "1=7a i<

D "TEITL’

www.hathitrust.org

Testing Program

* Test scalability of Solr open source search
engine with HathiTrust full-text content.

—Solr is based on the open source Lucene library

—Solr provides a mechanism for distributed search
with sharded indexes on multiple hosts for scaling
the index and with replication for scaling load.

e Tested with index sizes from 100,000 volumes
up to 1 million in 100,000 volume increments

www.hathitrust.org

Testing Program

* Tested with memory at 4, 8, 16, and 32 GB
* Tested different configurations

—Single index single machine
—Split index (2 shards) single machine
—Split index (2 shards) one on each of two machines

www.hathitrust.org @@)@

Testing Program: Hardware

* Servers
—2 PowerEdge 1950 blades

—2 Dual Core 3.0 GHz Processors

* NFS server
—4 JetStor 416S Raid Arrays RAID 6
—7 SATA drives 7500 RPM

* Network for NFS-Servers
—Gigabit private/unrouted network

www.hathitrust.org

Testing Program: Protocol

e 10,000 warm-up queries (from OPAC logs)

e 1,000 test queries (from OPAC logs)

* More details in report:

*h
ttp://www.hathitrust.org/technical reports/
Large-Scale-Search.pdf

www.hathitrust.org %J@

Testing Program Results

Scalability and Machine Configurations

* Solr scales linearly. At 32 GB total memory there is an
increase in slope above 600 thousand documents.

* Best response time was for 2 shards each on its own machine

Response time

(ms)
o
© o

)]
o o

Median Response Time 32 GB total memory

ggétﬁ’—,(?—h::

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of Volumes

—— 2 Shards 1 machine —=— Single Instance 2 Shards 2 machines

www. hathitrust.org

Testing Program Results

Load testing and Machine Configurations

Request rates over 1 query per second increased response time.
Rates over 4 gps were not sustainable at larger index sizes.

2 shards on 2 machines handled load best

Above 600 thousand documents response time increases rapidly

1 Million Volumes 32GB Load Testing

o 3500
2 3000 —
S = 2500 //'
ﬁ £ 2000 ——

@ 1500
9 E "//I—n/'
DS 1000 +— -
§ 500
< 0

0 2 4 6 8 10
Queries per second

—e— Single Index —=— 2 Shards on 1 machine 2 Shards 2 machines

www. hathitrust.org

Testing Program Results
Caching and Memory

Solr uses OS memory for caching of postings

Memory available for caching has most impact

on response time

Based on the 1 Million volume index size of

240GB, the index for 7 million documents
would be 1.6TB

Fitting entire index in memory not feasible
with terabyte size index

www.hathitrust.org

Response time varies with query

1000000

me (ms)

~ 10000

2 Shards 2 Machines 16GB Mem each

(log scale)

Average: 673
Median: 91

9oth: 328
goth: 7,504

100000 f=——p—+

e ER

Slowest 5% of queries

Response Time 95th percentile (seconds)

1.000
(<5}
£~ 100
a,'ﬁ
® S5 10
=°
°U
Q_d)
n L 1
o

0

940 950 960 970 980 990 1,000

Query number

www.hathitrust.org

Slow Queries

* The slowest 1% of queries took between 10 seconds
and 2 minutes.

* Slowest 0.5% of queries took between 30 seconds
and 2 minutes

 These queries affect response time of other queries
— Cache pollution
— Contention for resources

* Slowest queries are phrase queries containing
common words

www. hathitrust.org

Query processing

* Phrase queries use position index (Boolean
qgueries do not).

e Position index accounts for 85% of index size

e Position list for common words such as
“the” can be many GB in size

* This causes lots of disk I/0 .

www. hathitrust.org @

Query processing

* Solr depends on the operating systems disk
cache to reduce disk 1/0 requirements for
words that occur in more than one query

* |/O from Phrase queries containing
common words pollutes the cache

www. hathitrust.org @

Query Processing: Postings List

Doc ID Content
1 The black dog chased the white cat
2 The hungry dog ate the cat's food
3 The cat sat in the sun.
4 The dog buried a bone.
Word Doc IDs Word Doc IDs
a 4 food 2
ate 2 hungry D)
black 1 -

n 3
bone 4

sat 3
buried 4

sun 3

| *at 1,2,3

the 1,2,3,4

chased 1

www. hathitrust.org

Query Processing: Position List

Doc ID | Content
1 .
. The black dog chased the white cat
; 1 2 3 4 5 6 7
4 The dog buried a bone.
Word (Doc ID) positions Word (Doc ID) Positionss
a 4) 4 food)7
ate (2) 4 hungry (2) 2
black @2 - 34
bone 4)5 sat 3)3
buried 4)3 sun (3) 3
cat (1) 1.2)6.3)2 the (LR 1L5.(3)15. @)1
chased white a)E
dog (1)312)3, (4)2

www.hathitrust.org

Query Processing

* “Dog” AND “Cat”
ot AL “Dog” AND “Cat”

dOg 1 A4 Docs: 1,2

“The Cat” (Phrase)

the ﬂ{z\ﬂ 4 “The” AND “Cat”
cat U\ZI\EJ Docs: 1,2,3

the (1) 1, 5, (2)1@(3(@5 “The Cat”
17, e 6

cat Docs: 2,3

www. hathitrust.org

Slow Queries

* Slowest test query: “the lives and literature of the beat generation”

took 2 minutes.

e 4MB data read for Boolean query.
9,000+ MB read for Phrase query.

the

NUMBER OF POSTINGS LIST TOTAL TERM OCCURRENCES
DOCUMENTS (SIZE MB) (MILLIONS)

800,000

POSITION LIST
(SIZE MB)

of

892,000

and

769,000

literature

435,000

generation

414,000

lives

432,000

beat

278,000

Why not use Stop Words?

* The word “the” occurs 4 billion times; average

of 15,000 times per document in about
80-90% of all documents.

* Removing “stop” words (“the”, “of” etc.) not
desirable

* Couldn’t search for many phrases

—“to be or not to be”
—“the who”
—“man in the moon” vs. “man on the moon”

www.hathitrust.org C , i ?

Why not use Stop Words?

* Stop words in one language are content words
in another language

 German stopwords “war” and “die” are
content words in English

* English stopwords “is” and “by” are content
words (“ice” and “village”) in Swedish

www. hathitrust.org %@

“CommonGrams”

* Bi-Grams triple index size

* Nutch and CDL XTF implement
“CommonGrams”

* Create Bi-Grams for any two word sequence
containing common terms

* “The rain in spain falls mainly” = “the-rain”

) ((

“rain-in” “in-spain” “falls” “mainly”

www. hathitrust.org

“CommonGrams”

e Ported Nutch “CommonGrams” algorithm to
Solr

* Create Bi-Grams selectively for any two word
seguence containing common terms

www.hathitrust.org

CommonGrams Example

* Slowest query: “The lives and literature of the
beat generation”

e “the-lives” “lives-and”

e “and-literature” “literature-of”
» “of-the” “the-beat” “generation”

www.hathitrust.org

Standard index vs. CommonGrams

Standard Index Common Grams
OCC.lrJOR-IF;’?EII-\ICES NUII\;"OBI(EIE OF OCCIJ(I)%.II;’:II-\ICES NUI;';EE OF
;::Iﬁ_?l'g’l\';’ss) (THOUSANDS) :II:IIII(I:.(I?IROPI;JSS) (THOUSANDS)
the 2,013 386 of-the 446 396
of 1,299 440 generation 2.42 262
and 855 376 the-lives 0.36 128

literature-of

lives-and

thebeat 006l 26

TOTAL 450

Comparison of Response time (ms)

CommonGrams

average | median 90th 99th " slowest

/| query

Standard Index | 459 32 146 6,784 ‘ 120,595
Common Grams | 68 3 71 2,226 7,800

1000000

100000

10000

1000

100

Response Time (ms)

10

1

0.1

Response time for 500 Thousand volume index

S

(0]

100

200 300

400

500
Query number

600

700

—— Standard —=— CommonGrams |

800

900 1000

www.hathitrust.org

Scaling up to 5 million+

e Solr distributed search 10 shards, 500K docs
each

* Tried local storage but ran into contention
between indexing/optimizing and serving
searches

* Moved to separate build and serve machines
and shared storage with the Isilon

www.hathitrust.org %ﬁ

We Broke Solr!

e At around 500,000 documents (300GB index
size) we started getting this error:

java.lang.ArraylndexOutOfBoundsException: -14127432 at
org.apache.lucene.index.TerminfosReader.get(TerminfosReader.java:246)

* Dirty OCR in combination with over 400
languages created indexes with over 2.4 billion
unigue terms

* Lucene/Solr had a limit of 2.1 billion unique
terms per index.

www.hathitrust.org

We broke Solr!

e \We wrote to Solr list and Mike McCandless
patched Lucene to raise the limit to 274 Billion

* Dirty OCR is difficult to remove without
removing “good” words.

* Because Solr/Lucene tii/tis index uses pointers
into the frequency and position files we
suspect that the performance impact is
minimal compared to disk I/O demands, but

we will be testing soon.

www.hathitrust.org @@U@

Current System

* Solr distributed search. Split index into 10
shards

e Currently about 6.5 million docs and total
index size is about 3 terabytes.

e About 650,000 docs (300GB index) per shard
over 4 serving machines

* Two dedicated indexing machines
* |silon shared storage

www.hathitrust.org %ﬁ

Overall Architecture (1)

* VuFind catalog (Solr index)

—Source of update information and bibliographic
metadata large scale search indexing

e SLIP (Solr Large-scale Indexing processor)
—Determines which volumes should be indexed
—Builds documents to index
—Sends these to Solr for indexing

www.hathitrust.org

Overall Architecture (2)

* |Index
— 10 shards
— 6 machines
* 2 build index
—6 Solr instances on each machine
—Each writes to one shard
* 4 serve index
—3 Solr instances on each machine
—Each queries one shard
— Stored on Isilon Storage

* Index is built, optimized, snapshot taken, and
mounted

www.hathitrust.org

Overall Architecture (3)

* Application/Ul
—Sends queries in random fashion to one of the 10

Solr instances

* That instance distributes query to the other nine and
merges the results

e Connection with PageTurner (search inside a
single book, XPAT)

* Mirroring at IU

www.hathitrust.org

Hardware (1)

* Solr Server configuration

— Dell PowerEdge R710

— 2 x Quad Core Intel Xeon E5540 2.53GHz processors
(Nehalem)

— 72 GB RAM

— Red Hat Enterprise Linux 5.4 (kernel: 2.6.18 X86_64)

— Java(TM) SE Runtime Environment (build 1.6.0 16-b01)
— Solr 1.3.0.2009.09.03.11.14.39 (1.4-dev 793569)

— Tomcat 5.5.27

www.hathitrust.org

Hardware (2)

* Storage

— Isilon 1Q NAS cluster (20 I/X-series nodes, 4 GB RAM per
node)

— 480 750GB or 1TB SATA drives providing 420 TB raw
storage

— 4GB RAM per node giving 80 GB of coherent cache in
aggregate
* Network

— NFS uses a dedicated/private 9K MTU GbE network on Dell
PowerConnect 5448 switch

— NFS clients single-homed and mounts automatically

www.hathitrust.org

How SLIP is Distributed Over Network & Hardware

KEY

LSS APP

query goes to 1 solr servlet which then sends
to all other solr servlets on each machine

server/machine + * * +

"Slurm-1" "Slurm-2" "Slurm-3" "Slurm-4"
solr
(servlet)
tomcat
(servlet container)

read read read read read read read

Production| shard | shard | shard | shard | shard | shard | shard | shard | shard | shard
Index 1 2 3 4 5 6 7 8 9 10

Isilon
storage G snapshotﬁ

Build shard | shard | shard | shard | shard | shard | shard | shard | shard | shard
Index | 1 2 3 4 5 6 7 8 9 10

rrerrr e

write write write write write write write write write write

"Slurm-5"

each script picks a different solr instance each time it has a

(Lucene Documejltﬁ) document to index via round robln

SLIP Data Flows

re-queuer

queuer

— e
™~ 0 getid/

rights builder

errors
indexed

Lucene
id + result Document

code
|

dequeue™n
shadow rights

Isilon Storage

@wnte\

1
read @

OCR

rg

A

result

query

VuFind
solr

read
rights
info

bibliographic
metadata

o

[~ solr index
zip
1
KEY
script

Bottlenecks, Problems and Challenges Indexing

(1)

Problem: Scalability of page level indexing (1.5 billion pages)
unknown

— Solution: Index full documents in Solr. When user clicks on document,
do on-the-fly indexing to provide page level within-document
searching

Bottleneck: Assembling Solr documents from files in repository
slow
— Solution: Multiple Solr document producers running on multiple
machines

Bottleneck: Full optimization of nightly index builds takes too
long

www.hathitrust.org

Bottlenecks, Problems and Challenges Indexing

(2)

Problem: Indexing program must handle errors and timeouts
from multiple cooperating processes

— Solution: errors recorded for manual investigation

— Solution: some fix themselves, others are due to bad data
— Solution: timeouts automatically re-queued, gives a check on balance
between document creation vs. indexing rates
Bottleneck: Optimizing index takes more disk space than
available
— Solution: Optimize in stages
— Solution: Move to NAS with unlimited storage

www.hathitrust.org

Bottlenecks, Problems and Challenges Search
Performance

* Bottleneck: Solr relies on memory based OS disk caching for
performance Our index is too big to fit in memory (400-600GB per
million documents).

— Solution: Spread index over several Solr instances on several machines
— Solution: Increase memory on each machine

* Bottleneck: Slowest 1% of queries have unacceptable performance
due to high disk I/O

— Solution: Reduce disk I/0 requirements using CommonGrams and
Punctuation Filter

— Solution: Run cache-warming queries

* Problem: Use of truncation operator results in response time over 5
minutes for some queries and impacts performance of subsequent

www.hathitrust.org

Bottlenecks, Problems and Challenges General
Scalability issues

Bottlenecks:
— Performance of un-optimized index too slow
— Optimization takes multiple hours due to size of index
— Optimization on Solr instance serving queries degrades query response
time
— Solution: Use separate Solr instances for indexing/optimizing and
serving queries

Bottleneck: Optimized index too large to efficiently copy from build
to serve instances

— Solution: Use LVM snapshots

Bottleneck: Indexing and serving instances sharing RAID array
compete for disk I/O during optimization.

www.hathitrust.org

Bottlenecks, Problems and Challenges Other
Challenges

* Malformed queries and Boolean Operators

* Transition from repository search to single-
volume search

* Syncing Indexes
—Bibliographic index, full-text index, rights database

www.hathitrust.org

Next Steps

* Investigate further optimizations
* |Investigate facets and fielded search

* Integrate with other HathiTrust applications
such as Collection Builder

www.hathitrust.org @@U@

Possible Future Development

* Investigate relevance ranking

—Boost rank for words occuring in MARC subject,
author, title fields.

—Investigate document size normalization

* Improve multilingual access and retrieval

* Investigate page level indexing and integration
with book indexing

www. hathitrust.org

Possible Future Development

* |nvestigate user interface/user interaction
Issues

—How best to display large result sets

—How can users best narrow their search?
—Integration with user’s tasks

www.hathitrust.org

thank you!

* http://catalog.hathitrust.org

e http://www.hathitrust.org/blogs

www.hathitrust.org @@D@

